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4 - , I. INTRODUC TION

Whenever available installation height is limited , the antenna can be

~~~
• 

-

- foreshortened so as to fit into the limited space. This causes the antenna

impedance to become very reactive. Past practice was to tune out the
capacitive reactance by means of an inductor. This renders such an “elec-

trically small” antenna narrowband, and its efficiency is reduced by losses

occurring in the tuning circuits . This problem becomes substantial for
dipole lengths of less than X/8, which is generally used as the criterion for

~~~~. electrically small antennas. Typical performance results are: I to 10 per-

cent bandwidth and 70 to 30 percent efficiency, respectively, for a monopole
height of 0.05 wavelengths [I].

An alternate approach for tuning a short dipole or monopole consists
of using two of the antennas, which are mutually coupled, and matching the
input reactance of one with the reactance of the other after it has gone
through an inversion circuit. This inversion circuit is realizable in the
form of an externally complementarized hybrid feed circuit similar to the
one described previously for resonant-height antennas [2]. Mutual coupling

- 

between the two elements in the pair can be adjusted in a constrained design
volume by varying (a) the length-to-diameter ratio of the elements, and (b)

the element spacing and feed cable length differential for phasing.

S
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II. THE COMPLEMENTAR Y PAIR MA TCHING PRINCIPLE

The “Complementary Pair Element Group” or CPEG was first

conceived as a broadband element group with basically resonant radiator

length. The radiators were placed in a phased array environment , or in
front of a reflector , or both . In both cases detuning of the input impedance
resulted for a single dipole (or monopole) due to mutual coupling, either

with adjacent elements in the array, or with the image element(s) created
by the reflector , or both . The solution sought was a matching system that
would (a) match out individual element mismatches caused by operation
over a wide frequency range (without having to resort to electrically lar ge

structures such as log-periodics), and (b) maintain this match indepen-
dent of the above cited mutual coupling effects.

Two basically different approaches , briefly described in [2] and [3],
were investigated: self-complementary pairs and pairs of identical radiators
where complementarity was ach ieved by modifying the impedance of one
radiator through a “complementarizing” network, such as a delay line . In
both cases , the impedance averaging properties of 180-deg hybrid tees were
us ed [4] to match out the resulting sets of complementary impedances seen
at the hybrid output ports (Fig . 1). (Note that the symbol ~~ is used to
describe cornplementarity.) Figure 2 shows examples of different complex
complementary loads, each pair leading to a perfectly (within the hybrid
design) matched sum port, at the expense of power loss in the difference
port load equal to that suffered in a load isolator.

For the purpose of achieving optimum impedance match under all beam
steering conditions and ove r wide bandwidth in a phased array environment ,
it soon became apparent that self-complementary elements placed side by
side would not be practical eithe r from a gratin g lobe standpoint or because
of mutual coupling [5]. Figure 3 shows the basic feed circuit for an
externally complementariz ed endfire pair , and Fig . 4 is typical embodiment

-7- _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _

_____________ — ~— j_________  ——— — —~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1~~~~~~~ - ~~~—_.--.~.-



-~~ - 

~~~~~~~~~~~~~~~~~~~~ :~~
-- ‘ E’~~~

- - J ’
~~~ ~~~~~~~~~~~~~~~~~

2 - 1Zi = I Z i IL~i 
Z~~~Z0 

Z2 = Z j ~~= Z
0

~~~ 
j
/qs

H 
_ _ _ _ _ _ _ _  180-deg 

_ _ _ _ _ _ _ _ _

HYBRID

zI 
~zO

Fig. 1. General Im pedance Relations

*

-8- 

- 
- - —v-- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ — — -—-— -~~ ---~~~~~—-~~~~~---..- - --~~~~~~-



.
~—.- ---- ~~ . - -

~~~~
---‘-.

~~~‘~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

3:1 VSWR

~
‘ 2:1 VSWR
3

1±

L 
Z2 

_ _  

z~ _ _ _ _  _ _  

Z2
zi

z

Fig . 2. Arbitrary Complementary Loads

-9-

• - --—  -~~~~~ .. — 
~~~~~~~~I ~T.~

__
~
_ 

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_____ - ~~~~~~~~~ 
-‘ -

— ~. .  ~~~~~~~~~~~~~~~~~~~~ ~-~~-• -. ~~~~~~~~~~~~~~~~~~~~

~1.~ 
.
~ -

~~~~~~~ 
ZM DIRECTION

1. T + T  - 
-

o
Z~~~5Ofl

~~~~ . 1 ~L.... z ~~~
— 
= 

2500

L BROADBAND
180-d eg
HYBRID -

• 5O~

Fig. 3. Broadband Endfire Complementary Pair Feed Circuit

-10-

— ~~~~~~~~ - 
-
~~~ ~~~ -~~.‘—-~~.---- -~

..-,.—
~--

--~~~~~~~~
-. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~



- 
-L_ 

~~~~~~~~~~~~~~~ . -

~~~ ~~~~~~~~~~~~~~~~~ ___

~~ _~~
t
~~~~ 

~~~~~

. * 

-, -

_ _  

_

Fig. 4. Endfire Complementary Pair Element Group With Reflector

— 1 1 —

L .— — — --v——-— - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

.- ;~ _~ . _ _  ~~
- —- - -

~~
-.
~~ —~

.-.-—-. 
~~~— = - ---  .—~—————— ~

-.-.---,.—---- -



- ~ ,rw~~~~.~~~~~7” - -  - 
t.~- • -_ 

~~~~~~ _ ~~~~~~~~~~~~~~~~~~~~~~ Wp .n. P .’-~~~~~~-

of a monopole pair in front of a reflector. (The reflector was added to the
array to provide maximum front-to-back ratio for purposes of interference
suppression.) Figures 5 and 6 show measured monopole impedances and
Fig. 7 shows the VSWR for the group input at the hybrid sum port. Figure 8,
which is the powe r measured at the different port , represents matching loss
other than hybrid insertion losses [zJ , [3], [5].

The surprising conclusion from Fig . 8 was that good matching prop-
erties (from 6:1 to 1.5:1 VSWR ) were achieved with very little power loss
at the low end of the band . The endfire complementary pair, which emerged
as a possible solution for this case , was studied extensively, both in
the form of linear and circula r arrays [6] [7] . Both an enlarged UHF
version and a full-scale HF version of linear broadside reflector array s
using endfire  pairs , which were studied as a follow- on , revealed that: “ . . . A
suitably designed CPEG linear array provide s at least 3.5:1 bandwidth for
±45 degree beam steering, and quite probably 4:1 bandwidth for lesser steer-
ing . For broadside phasing, efficiencies of 80 percent can be achieved for
the feed system from the element hybrids forward , which includes losses
due to mutual coupling. For beam steering to ±45 degrees, the efficiency
drops to 55 to 60 percent at midband, and again exceeds 80 percent towards
the band edg e s . . . ” [8]. These conclusions took all possible losses into
account , and confirmed gain predictions from pattern integration through
actual absolute gain comparisons with a standard gain horn , and monitoring
of all element currents .  The conclusion reached by Gory was that the
impedance matching was “phenomenally good” and was due to some
“fortuitous averaging in the hybrids ” . The conclusion reached by this author
is the realization that inter-element coup ling within the pair can be made to
enhance the matching process at the low-frequency end of a typical 3:1
frequency rang e , and that mutual coupling effects due to adjacent pairs in a
phased ar ray  can be minimized. Both properties are inherent to the hybrid
feed circuit and to the exte rnal complementarization process.  The mainte-
nance of an optimum amount of endfirc coupling thus emerged as one of the

- 12-
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design criteria for endfire complementary pairs, when the radiators were

approaching the electrically small regime. On the other band, the
• straightforward combination of self- complementary elements (a slot and a

monopole, specifically) had been shown to suffe r from very low efficiency
when the radiators were electrically small, partly because of power lost
in the load terminating a feed line [9].

I
I
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III . THE ELECTRICALLY SMALL COMPLEMENTARY
PAIR (ESCP)

Since inter-element mutual coupling is strongly dependent on the

elec trical height of the radiators , and the only other variables are the fat-
ness and shape of the elements , it is intuitively obvious that a reduction
in coupling due to reduced height has to be compensated for by vastly
decreasing the length-to-diameter ratio . To determine the minimum useful

“fatness” , several design shapes were studied experimentally, starting

with some relatively thin elements . (The length-to-diameter ratio of the

resonant-height monopoles described in [2] through [8] was about 3, with

a 60-deg cone angle at the base . )  A design configuration considered accept-

able regarding VSWR at the lowest frequency is shown in Fig . 9. The total

height of the radiators was one eighteenth of a wavelength at the lowest

frequency, the height of the 90-deg conical section being exactly half the
total height for a length-to-diameter ratio of unity . The measured VSWR

of this ESCP configuration is shown in Fig . 10, in comparison to the VSWR
of an isolated monopole of the same dimensions . ESCP complementarity
was maximized at \ through a quarter-wave length of transmission line .

To evaluate the total matching loss of this ESCP configuration , the
power absorbed in the difference port load of the hybrid was measured as

shown in Fig . 11. The red paths illustrate the power flow. Of the total

power P0 entering the sum port, a cer tain percentage , reduced by sum port
reflection and hybrid insertion loss, reaches the elements. There, a por-

tion gets reflected; the rest is radiated except for a small portion accepted
by the other element and re-channeled into the circuit. The major advan-
tage of the mutual coupling apparently lies in an adjustment of the element
reactance. Indeed , measur ements during the programs reported in [5]
and [8] have shown that not only the sum port VSWR improve s, but the m di-
vidual element reflections drop drastically as soon as the loop is closed by
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the hybrid . The powe r reflected from the elements gets divided into the
sum port and the difference port. The sum port portion has already been
accounted for and can simply be determined f rom the sum port r efle ction

coefficient when the difference port is terminated in its characteristic
impedance. The difference port power can be measured as a percentage of
P as shown in Fig. 11.

0

Table I summarizes the formulas governing the efficiency calculation

based on the dif f erence por t power , sum port reflection coefficient, and
sum -and-difference port insertion losses. (The inherent hybrid mismatches
can be neglected since they are very small.) Insertion losses are less than
0. 5 dB in the lower half of the band , and about 0 .4  dB at the lowest fre-
quency. Equation (1)  includes a te rm for the radiation efficiency of the
elements. This is explained in more detail in Eq. (5) ,  including an inequalit y

for the range of radiation resistance depending on the current distribution.
The efficiency based on radiator and cable ohmic losses can usually be

ne glected for these fat radiators. Table 2 gives a sample calculation for the
ESCP at the lowest design frequency, leading to -4 . 8 dB. It is assumed in this
calculation that all of the reflected power will have to be absorbed. This
may be pessimistic , but lacking any specific information on the transmitter
output circuit and the distance between transmitter and antenna in wave-
lengths, this is the only prope r accounting method. Comparing this “To tal
Matching Efficiency” with that of an isolator used to match the individual
monopole leads to Fig. 12. The isolator was assumed lossless, lacking
any specifics. Any particular isolator (if available at , say, VHF ) may have
a substantial insertion loss , of course , which will have to be added to the

values of Fig. 12.

Actual absolute gain , in both cases , would have to be determined from

gain measurements on a pattern range. However , the previous laborious

procedures described in [81 , which failed to identify any “hidden loss”
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Table 1. ESCP Efficiency Formulas

~ tot ~ ~< 
~ R ~ 100 [%J (1)

4
‘~~ 1(’~~

)
~ (I .Lj ~ ]

with = I - log log 
~~ 

10 + 10 j (2)

= 

~ (I L )~ 
X 

~~~ 

°

= log t [(
I .L. )z 

+ log (I ~r~ )] 
(3)

True Sum Port Reflection Coefficient
referred to element VSWR

- 

(VSWR) 1 - 
1

“ (VSWR) 1 4 - l  ( )
e

with Coth 1(VSWR) = Coth~~
1(VSWR ) - -____

el m 8.686
.

and

- 
- (VSWR)e1 = element standing wave ratio

(VSWR ) = measur ed (hybrid) VSWR

= hybrid attenuation constant
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Table 1 . ESCP Efficiency Formules (cont. )

~
R R R + R A + R c 

(5)

Where

RR Element Radiation Resistance

40 ~~ (h)
Z 

< RR < 160 ~~ (h )
Z

and

RA = Element Ohmic Losses

R C = Cable c*imic Losses

Typically,

~
R ~ 90% for h ~

.
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Table 2. ESCP Efficiency Budget

f = . ~~ fo

Hybrid lnsertion Losses (I .L . )L = 0 . 4 d B  Sum Port
(I. L. )~ = 0 .4  dB Difference Port - 

-

Corrected Sum Port Reflection Loss - 1. 8 dB
(3. 8:1 VSWR)

= 0.583

Power Mea ;ured at Difference Port - 4.3  dB wrt  Z input

1 - Actual Difference Port Power - 3.5  dB wrt E input

Difference Port Matching Efficiency ~T1 I - log ’ ( -3 .5  dB) = 55%

Sum Port Reflection Efficiency TI F = 66%

Sum Port Insertion Loss Efficiency TI1 L = 91%

Total Efficiency 11~~~(Excluding Radiator , Cable Losses) —~~ -— = 0 .55 x 0.66 x 0.91
R

= 0 .33

= -4. 8 dB
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Fig . 12. ESCP Matching Loss (Assuming all of reflected power
of Fig. 2 is converted into loss)

-26- 

--- -- - - --- - -

~~~~~~~~ -- -  - -~~-—-- —
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 
~~- ~~~~~~ .-~~~~~~ ~ ~~~~~~~~~~~~~~~



mechanism, should justif y the assumption that for the ESCP , the net
absolute gain can be roughly estimated from the individual small radiator
pattern gain ( 1 . 7 5  dB + 3 dB for  ground plane ) plus the pair directivit y gain
as illustrated in Fig. 13 [to] , minus the matching losses given in Fig. 12.
The total gain bandwidth product thu s appears to have been improved with
respect  to the classical inductor-matched electrically small monopole
antenna . The matching is completely instantaneous , so that wideband si gnals
can be transmitted. Using a definition of bandwidth where the minimum
radiato r dimension and the minimum efficiency occur at the lowest operating
frequency (as shown in Figs.  10 and 12), we can assign a bandwidth of 3:1 ,
or relative bandwidth of 100 percent where an octave equals 66 percent .
The minimum efficiency is approximately 25 percent , or -6 dB , and the
directive gain in the direction of propagation approximately 5. 75 dB. Hence ,
unity gain /bandwidth product exists , as compared to 0. 1 G x B for  a 30 percent
eff ic ient  monopole with “broadband” matching to 10 percent relative bandwidth ,
or compared to 0. 02 G x B for a monopole tuned to maximum e f f i c i ency  and mini-
mum bandwidth.  It appears , therefore , that about an order  of magnitude im-
provement in gain X bandwidth product should be feasible.

Potential applications of the ESCP include directional elements for
scanning wideband phased a r rays , small antennas for low-silhouette require-
ments on various vehicles , and other app lications calling for wideband
antennas or scat t e re r s  with direct ional  pattern ove r part of the band .

*

-27- 

---. --. , - - -~~~~~ — .- -

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~-- --~~~~~~~ —-—--- ‘--- . --



_ __ _  

- ,  
--

f1 0.5 = f3 
= 1.5 f0

S A 0 /8  S = S = 3x 018
~ 45 deg = 90 deg = 135 deg

GD ~ 1 d B  6D ~~3 d B

Fig . 13. ESCP Pattern Summary
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